To: People interested in HIPPI-6400-PH copper cable simulations:

From: Bill McCoy, Raytheon E-Systems

Date: June 25, 1997

The following is a summary of my Pspice simulation results to date:

- 1. I have <u>not</u> found any equalizer that works from 10 to 40 meters which I think is the absolute minimum range we want for the HIPPI 6400 standard. This dictates an equalizer which is adaptable to the cable length.
- 2. The jitter on the SGI and all other equalizers is well in excess of the SuMAC budget of 180 ps at 50 meters when running the Widmer pattern.
- 3. For longer cables, the best results in eye opening, jitter and rise time were achieved using:
 - a) The SuMAC driver (2200 mVp-p 1 Ω source followed by a 200 ps, 55 Ω , delay),
 - b) a minimized 75 Ω trace run (210 ps),
 - c) a 47000 pf DC block (can be located anywhere in run with length balance unnecessary),
 - d) no load resistor,
 - e) 135 ps-55 Ω connector,
 - f) a 12 pf-220 Ω equalizer in the connector,
 - g) Gore 28 gauge cable model,
 - h) 200 ps-55 Ω connector,
 - i) $262.5 \text{ ps } 75 \Omega \text{ trace run,}$
 - j) 200 ps 55 Ω stub terminated in 5.5 pf (all data simulated at this point),
 - k) flyby 350 ps 75 Ω trace run to,
 - 1) 75 Ω load.

12pf-220 Ω Equalizer Results

Cable Length	Minimum A-B Eye Opening	Jitter	Max tr, tf	Minimum Diamond Flat Top
(meters)	(mVp-p)	(ps p-p)	(ps p-p)	(ps)
10	<400			
20	670	107	144	1749
40	446	158	361	1481
50	423	278	617	1105

Note: Bold face type indicates out of current limits.

4. Ten meters was simulated with no equalizer.

No Equalizer Results

Cable Length	Minimum A-B Eye Opening	Jitter	Max tr, tf	Minimum Diamond Flat Top
(meters)	(mVp-p)	(ps p-p)	(ps p-p)	(ps)
10	1695	269	141	1590

5. Five meters was in spec using a 39 Ω resistor in place of the 220 in the connector with no peaking capacitor.

39 Ω in Connector Results

Cable Length	Minimum A-B	Jitter	Max tr, tf	Minimum Diamond
	Eye Opening			Flat Top
(meters)	(mVp-p)	(ps p-p)	(ps p-p)	(ps)
5	1040	144	68	1788
10	2246	214	80	1706

At 2 meters it was out of spec on eye opening due to what appeared to be reflections from the load. The reflections were still there with only the 75 Ω load, so it may be a Pspice problem. PSpice went totally divergent when I tried 1 meter.

There may be better values for the equalizer than the ones I've used. They were primarily driven by trying to get a good eye opening at 50 meters. Almost certainly there are better values for 10 to 40 meters. I recomend putting the equalizer in the connector. This allows the ANSI spec to be finalized with it left to the cable assemblers to make the final value determination.

I suggest we change the spec on the cable to provide minimum eye A-B opening of 400mVp-p and a diamond flat top with definition of the minimum time below -160mV and above +160mV of 1340 ps. This combines the jitter and the rise and fall time spec on the cable and allows a tradeoff betwen the two parameters.

The following figure illustrates the spec.

1000 ps should be acceptable if fiber is to work at 1 Gbps. That would allow 50 meters with the 12pf-220 Ω equalizer to meet spec.

Herb Van Deusen and Jim Broomall at W.L. Gore are building a cable test card that will test the 12pf-220 Ω and other equalizer configurations. Hopefully these results will be verified.

Regards, Bill McCoy

I can be reached on E-mail via Craig Davidson at davidson@esy.com or Robert Clarkson at RobertC@gar.esys.com.